- 屋頂風(fēng)機(jī)240cm屋頂風(fēng)機(jī)83cm
- 145cm負(fù)壓風(fēng)機(jī)54寸玻璃鋼風(fēng)機(jī)
- 120cm負(fù)壓風(fēng)機(jī)46寸玻璃鋼風(fēng)機(jī)
- 100cm負(fù)壓風(fēng)機(jī)36寸玻璃鋼風(fēng)機(jī)
- 90cm負(fù)壓風(fēng)機(jī)32寸玻璃鋼風(fēng)機(jī)
- 75cm負(fù)壓風(fēng)機(jī)28寸玻璃鋼風(fēng)機(jī)
- 地溝風(fēng)機(jī)畜牧風(fēng)機(jī)
- 冷風(fēng)機(jī)/環(huán)?照{(diào)/移動冷風(fēng)機(jī)
- 塑料水簾/紙水簾
- 玻璃鋼風(fēng)機(jī)外框|風(fēng)機(jī)風(fēng)葉加工
降溫設(shè)備風(fēng)機(jī)盤管控制的方案空氣動力學(xué)
但是,由于這種采暖方式只基于對流換熱,而致使室內(nèi)達(dá)不到最佳的舒適水平,故只適用于人停留時(shí)間較短的場所,如:辦公室及賓館,而不用于普通住宅。由于增加了風(fēng)機(jī),提高了造價(jià)和運(yùn)行費(fèi)用,設(shè)備的維護(hù)和管理也較為復(fù)雜。
風(fēng)機(jī)盤管控制多采用就地控制的方案,分簡單控制和溫度控制兩種。 簡單控制:使用三速開關(guān)直接手動控制風(fēng)機(jī)的三速轉(zhuǎn)換與啟停。溫度控制:STC 系列溫控器根據(jù)設(shè)定溫度與實(shí)際檢測溫度的比較、運(yùn)算,自動控制 STV 系列電動兩 / 三通閥的開閉;風(fēng)機(jī)的三速轉(zhuǎn)換。或直接控制風(fēng)機(jī)的三速轉(zhuǎn)換與啟停,從而通過控制工程水流或風(fēng)量達(dá)到恒溫的目的。
風(fēng)機(jī)盤管做為中央空調(diào)的末端設(shè)備,其質(zhì)量的好壞決定了室內(nèi)的空調(diào)效果。性能主要是送冷(熱)量的保障、送風(fēng)量的保障,噪音的數(shù)值比、冷凝水不泄漏及電器、鈑金件設(shè)計(jì)的合理性等等。
空氣動力學(xué)是力學(xué)的一個分支,它主要研究物體在同氣體作相對運(yùn)動情況下的受力特性、氣體流動規(guī)律和伴隨發(fā)生的物理化學(xué)變化。它是在流體力學(xué)的基礎(chǔ)上,隨著航空工業(yè)和噴氣推進(jìn)技術(shù)的發(fā)展而成長起來的一個學(xué)科。
空氣動力學(xué)的發(fā)展簡史
最早對空氣動力學(xué)的研究,可以追溯到人類對鳥或彈丸在飛行時(shí)的受力和力的作用方式的種種猜測。17世紀(jì)后期,荷蘭物理學(xué)家惠更斯首先估算出物體在空氣中運(yùn)動的阻力;1726年,牛頓應(yīng)用力學(xué)原理和演繹方法得出:在空氣中運(yùn)動的物體所受的力,正比于物體運(yùn)動速度的平方和物體的特征面積以及空氣的密度。這一工作可以看作是空氣動力學(xué)經(jīng)典理論的開始。
1755年,數(shù)學(xué)家歐拉得出了描述無粘性流體運(yùn)動的微分方程,即歐拉方程。這些微分形式的動力學(xué)方程在特定條件下可以積分,得出很有實(shí)用價(jià)值的結(jié)果。19世紀(jì)上半葉,法國的納維和英國的斯托克斯提出了描述粘性不可壓縮流體動量守恒的運(yùn)動方程,后稱為納維-斯托克斯方程。
到19世紀(jì)末,經(jīng)典流體力學(xué)的基礎(chǔ)已經(jīng)形成。20世紀(jì)以來,隨著航空事業(yè)的迅速發(fā)展,空氣動力學(xué)便從流體力學(xué)中發(fā)展出來并形成力學(xué)的一個新的分支。
航空要解決的首要問題是如何獲得飛行器所需要的舉力、減小飛行器的阻力和提高它的飛行速度。這就要從理論和實(shí)踐上研究飛行器與空氣相對運(yùn)動時(shí)作用力的產(chǎn)生及其規(guī)律。1894年,英國的蘭徹斯特首先提出無限翼展機(jī)翼或翼型產(chǎn)生舉力的環(huán)量理論,和有限翼展機(jī)翼產(chǎn)生舉力的渦旋理論等。但蘭徹斯特的想法在當(dāng)時(shí)并未得到廣泛重視。
約在1901~1910年間,庫塔和儒科夫斯基分別獨(dú)立地提出了翼型的環(huán)量和舉力理論,并給出舉力理論的數(shù)學(xué)形式,建立了二維機(jī)翼理論。1904年,德國的普朗特發(fā)表了著名的低速流動的邊界層理論。該理論指出在不同的流動區(qū)域中控制方程可有不同的簡化形式。
邊界層理論極大地推進(jìn)了空氣動力學(xué)的發(fā)展。普朗特還把有限翼展的三維機(jī)翼理論工程化,給出它的數(shù)學(xué)結(jié)果,從而創(chuàng)立了有限翼展機(jī)翼的舉力線理論。但它不能適用于失速、后掠和小展弦比的情況。1946年美國的瓊期提出了小展弦比機(jī)翼理論,利用這一理論和邊界層理論,可以足夠精確地求出機(jī)冀上的壓力分布和表面摩擦阻力。
近代航空和噴氣技術(shù)的迅速發(fā)展使飛行速度迅猛提高。在高速運(yùn)動的情況下,必須把流體力學(xué)和熱力學(xué)這兩門學(xué)科結(jié)合起來,才能正確認(rèn)識和解決高速空氣動力學(xué)中的問題。1887~1896年間,奧地利科學(xué)家馬赫在研究彈丸運(yùn)動擾動的傳播時(shí)指出:在小于或大于聲速的不同流動中,彈丸引起的擾動傳播特征是根本不同的。
在高速流動中,流動速度與當(dāng)?shù)芈曀僦仁且粋重要的無量綱參數(shù)。1929年,德國空氣動力學(xué)家阿克萊特首先把這個無量綱參數(shù)與馬赫的名字聯(lián)系起來,十年后,馬赫數(shù)這個特征參數(shù)在氣體動力學(xué)中廣泛引用。
小擾動在超聲速流中傳播會疊加起來形成有限量的突躍——激波。在許多實(shí)際超聲速流動中也存在著激波。氣流通過激波流場,參量發(fā)生突躍,熵增加而總能量保持不變。
英國科學(xué)家蘭金在1870年、法國科學(xué)家許貢紐在1887年分別獨(dú)立地建立了氣流通過激波所應(yīng)滿足的關(guān)系式,為超聲速流場的數(shù)學(xué)處理提供了正確的邊界條件。對于薄冀小擾動問題,阿克萊特在1925年提出了二維線化機(jī)冀理論,以后又相應(yīng)地出現(xiàn)了三維機(jī)翼的線化理論。這些超聲速流的線化理論圓滿地解決了流動中小擾動的影響問題。
在飛行速度或流動速度接近聲速時(shí),飛行器的氣動性能發(fā)生急劇變化,阻力突增,升力驟降。飛行器的操縱性和穩(wěn)定性極度惡化,這就是航空史上著名的聲障。大推力發(fā)動機(jī)的出現(xiàn)沖過了聲障,但并沒有很好地解決復(fù)雜的跨聲速流動問題。直至20世紀(jì)60年代以后,由于跨聲速巡航飛行、機(jī)動飛行,以及發(fā)展高效率噴氣發(fā)動機(jī)的要求,跨聲速流動的研究更加受到重視,并有很大的發(fā)展。
遠(yuǎn)程導(dǎo)彈和人造衛(wèi)星的研制推動了高超聲速空氣動力學(xué)的發(fā)展。在50年代到60年代初,確立了高超聲速無粘流理論和氣動力的工程計(jì)算方法。60年代初,高超聲速流動數(shù)值計(jì)算也有了迅速的發(fā)展。通過研究這些現(xiàn)象和規(guī)律,發(fā)展了高溫氣體動力學(xué)、高速邊界層理論和非平衡流動理論等。
由于在高溫條件下全引起飛行器表面材料的燒蝕和質(zhì)量的引射,需要研究高溫氣體的多相流?諝鈩恿W(xué)的發(fā)展出現(xiàn)了與多種學(xué)科相結(jié)合的特點(diǎn)。
空氣動力學(xué)發(fā)展的另一個重要方面是實(shí)驗(yàn)研究,包括風(fēng)洞等各種實(shí)驗(yàn)設(shè)備的發(fā)展和實(shí)驗(yàn)理論、實(shí)驗(yàn)方法、測試技術(shù)的發(fā)展。世界上第一個風(fēng)洞是英國的韋納姆在1871年建成的。到今天適用于各種模擬條件、目的、用途和各種測量方式的風(fēng)洞已有數(shù)十種之多,風(fēng)洞實(shí)驗(yàn)的內(nèi)容極為廣泛。
20世紀(jì)70年代以來,激光技術(shù)、電子技術(shù)和電子計(jì)算機(jī)的迅速發(fā)展,極大地提高了空氣動力學(xué)的實(shí)驗(yàn)水平和計(jì)算水平,促進(jìn)了對高度非線性問題和復(fù)雜結(jié)構(gòu)的流動的研究。
除了上述由航空航天事業(yè)的發(fā)展推進(jìn)空氣動力學(xué)的發(fā)展之外,60年代以來,由于交通、運(yùn)輸、建筑、氣象、環(huán)境保護(hù)和能源利用等多方面的發(fā)展,出現(xiàn)了工業(yè)空氣動力學(xué)等分支學(xué)科。
空氣動力學(xué)的研究內(nèi)容
通常所說的空氣動力學(xué)研究內(nèi)容是飛機(jī),導(dǎo)彈等飛行器在名種飛行條件下流場中氣體的速度、壓力和密度等參量的變化規(guī)律,飛行器所受的舉力和阻力等空氣動力及其變化規(guī)律,氣體介質(zhì)或氣體與飛行器之間所發(fā)生的物理化學(xué)變化以及傳熱傳質(zhì)規(guī)律等。從這個意義上講,空氣動力學(xué)可有兩種分類法:
首先,根據(jù)流體運(yùn)動的速度范圍或飛行器的飛行速度,空氣動力學(xué)可分為低速空氣動力學(xué)和高速空氣動力學(xué)。通常大致以400千米/小時(shí)這一速度作為劃分的界線。在低速空氣動力學(xué)中,氣體介質(zhì)可視為不可壓縮的,對應(yīng)的流動稱為不可壓縮流動。大于這個速度的流動,須考慮氣體的壓縮性影響和氣體熱力學(xué)特性的變化。這種對應(yīng)于高速空氣動力學(xué)的流動稱為可壓縮流動。
其次,根據(jù)流動中是否必須考慮氣體介質(zhì)的粘性,空氣動力學(xué)又可分為理想空氣動力學(xué)(或理想氣體動力學(xué))和粘性空氣動力學(xué)。
除了上述分類以外,空氣動力學(xué)中還有一些邊緣性的分支學(xué)科。例如稀薄氣體動力學(xué)、高溫氣體動力學(xué)等。
在低速空氣動力學(xué)中,介質(zhì)密度變化很小,可視為常數(shù),使用的基本理論是無粘二維和三維的位勢流、翼型理論、舉力線理論、舉力面理論和低速邊界層理論等;對于亞聲速流動,無粘位勢流動服從非線性橢圓型偏微分方程,研究這類流動的主要理論和近似方法有小擾動線化方法,普朗特-格勞厄脫法則、卡門-錢學(xué)森公式和速度圖法,在粘性流動方面有可壓縮邊界層理論;對于超聲速流動,無粘流動所服從的方程是非線性雙曲型偏微分方程。
在超聲速流動中,基本的研究內(nèi)容是壓縮波、膨脹波、激波、普朗特-邁耶爾流動、錐型流,等等。主要的理論處理方法有超聲速小擾動理論、特征線法和高速邊界層理論等?缏曀贌o粘流動可分外流和內(nèi)流兩大部分,流動變化復(fù)雜,流動的控制方程為非線性混合型偏微分方程,從理論上求解困難較大。
高超聲速流動的主要特點(diǎn)是高馬赫數(shù)和大能量,在高超聲速流動中,真實(shí)氣體效應(yīng)和激波與邊界層相互干擾問題變得比較重要。高超聲速流動分無粘流動和高超聲速粘性流兩大方面。
工業(yè)空氣動力學(xué)主要研究在大氣邊界層中,風(fēng)同各種結(jié)構(gòu)物和人類活動間的相互作用,以及大氣邊界層內(nèi)風(fēng)的特性、風(fēng)對建筑物的作用、風(fēng)引起的質(zhì)量遷移、風(fēng)對運(yùn)輸車輛的作用和風(fēng)能利用,以及低層大氣的流動特性和各種顆粒物在大氣中的擴(kuò)散規(guī)律,特別是端流擴(kuò)散的規(guī)律,等等。
空氣動力學(xué)的研究方法
空氣動力學(xué)的研究,分理論和實(shí)驗(yàn)兩個方面。理論和實(shí)驗(yàn)研究兩者彼此密切結(jié)合,相輔相成。理論研究所依據(jù)的一般原理有:運(yùn)動學(xué)方面,遵循質(zhì)量守恒定律;動力學(xué)方面,遵循牛頓第二定律;能量轉(zhuǎn)換和傳遞方面,遵循能量守恒定律;熱力學(xué)方面,遵循熱力學(xué)第一和第二定律;介質(zhì)屬性方面,遵循相應(yīng)的氣體狀態(tài)方程和粘性、導(dǎo)熱性的變化規(guī)律,等等。
實(shí)驗(yàn)研究則是借助實(shí)驗(yàn)設(shè)備或裝置,觀察和記錄各種流動現(xiàn)象,測量氣流同物體的相互作用,發(fā)現(xiàn)新的物理特點(diǎn)并從中找出規(guī)律性的結(jié)果。由于近代高速電子計(jì)算機(jī)的迅速發(fā)展,數(shù)值計(jì)算在研究復(fù)雜流動和受力計(jì)算方面起著重要作用,高速電子計(jì)算機(jī)在實(shí)驗(yàn)研究中的作用也日益增大。因此,理論研究、實(shí)驗(yàn)研究、數(shù)值計(jì)算三方面的緊密結(jié)合是近代空氣動力學(xué)研究的主要特征。
空氣動力學(xué)研究的過程一般是:通過實(shí)驗(yàn)和觀察,對流動現(xiàn)象和機(jī)理進(jìn)行分析,提出合理的力學(xué)模型,根據(jù)上述幾個方面的物理定律,提出描述流動的基本方程和定解條件;然后根據(jù)實(shí)驗(yàn)結(jié)果,再進(jìn)一步檢驗(yàn)理論分析或數(shù)值結(jié)果的正確性和適用范圍,并提出進(jìn)一步深入進(jìn)行實(shí)驗(yàn)或理論研究的問題。如此不斷反復(fù)、廣泛而深入地揭示空氣動力學(xué)問題的本質(zhì)。
20世紀(jì)70年代以來,空氣動力學(xué)發(fā)展較為活躍的領(lǐng)域是湍流、邊界層過渡、激波與邊界層相互干擾、跨聲速流動、渦旋和分離流動、多相流、數(shù)值計(jì)算和實(shí)驗(yàn)測試技術(shù)等等。此外,工業(yè)空氣動力學(xué)、環(huán)境空氣動力學(xué),以及考慮有物理化學(xué)變化的氣體動力學(xué)也有很大的發(fā)展。
來源:佳工機(jī)電網(wǎng)
降溫設(shè)備
地溝風(fēng)機(jī)
屋頂負(fù)壓風(fēng)機(jī)
相關(guān)的主題文章: